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Abstract This chapter introduces the small-data, large-scale optimization
regime, an asymptotic setting that arguably better describes certain data-
driven optimization applications than the more traditional large-sample
regime. We highlight unique phenomena that emerge in the small-data, large-
scale regime, and show how these phenomena cause certain traditional data-
driven optimization algorithms like sample average approximation (SAA) to
fail. We then propose a new debiasing approach that has provably good per-
formance in this regime, highlighting a new path forward for research and
development into these types of applications.

1 Why Small Data?

Despite the promises of Big Data, data in modern operations research ap-
plications can be scarce. Worse, this data scarcity is typically unavoidable.
For example, in some systems, such as financial markets, data are rapidly
time-varying. Consequently, only the most recent data are indicative of cur-
rent conditions and obtaining additional, relevant data is impossible. In other
settings, data-collection can be expensive, either financially or operationally.
For example, when optimizing early-childhood interventions to prevent adult
obesity, it might take years to observe a single data point. Finally, in some
settings such as medicine and education, data are highly regulated by privacy
laws. These laws prohibit decision-makers from directly accessing protected
data, leaving them instead to work with either i) coarser, aggregated “sum-
mary” data (see, e.g., (Gupta et al., 2020) for discussion) or ii) anonymized
data that are deliberately contaminated to protect privacy (see, e.g., (Dwork,
2008)). In all these settings, we either cannot access as much data as we would
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ideally like, or we cannot access the kind of data we would ideally like. In
this sense, data are fundamentally scarce, and any estimates of uncertain
parameters in the system necessarily have low precision.

In the context of operations management, specifically, data scarcity some-
times arises as a result of personalization or customization. Indeed, real-world
applications often require making thousands of separate decisions simultane-
ously, each customized to a particular, person, product and instant of time.
Such personalization exacerbates data scarcity, since there may only be a few
similar people, products, and times historically from which to draw.

This “personalization induced data scarcity” is not simply a pathologi-
cal possibility, but rather a commonplace occurrence. For example, Gupta
and Rusmevichientong (2021) studies data from a large online retailer that
sells hundreds of thousands of products per quarter. The authors show that
even among the most popular product categories, half of all product types
sold have fewer than 10 total sales in the last quarter. Similarly, the Movie-
Lens25M dataset (Harper and Konstan, 2015) consists of 25 million ratings
of 62,000 movies by 162,000 users. Despite this size, 60% of movies have 10
or fewer ratings. Finally, Liu and Li (2017) observe that even when using
real-time GPS traffic data from millions of drivers, many arcs in urban road
network are traveled relatively infrequently, leading to “stale” data that are
too old to be meaningful. Similar examples, with large datasets describing
a huge number of uncertain parameters but where most parameters have a
fairly limited amount of relevant data, abound throughout operation research.

In the absence of strong modeling assumptions, data scarcity limits our
ability to estimate uncertain quantities effectively. Hence, most uncertain pa-
rameters in these settings necessarily admit, at best, low-precision estimates.
We term decision-making settings with these features –i.e., many uncertain
parameters, each with a low precision estimate – the small-data, large-scale
regime.

Despite the prevalence of applications in the small-data, large-scale regime,
however, most data-driven optimization methods are inspired by and ana-
lyzed in the large-sample regime, i.e., the setting where the available data are
increasing, and all uncertain parameters admit increasingly precise estimates.
Many data-driven algorithms behave very differently in these two regimes,
suggesting provably good theoretical performance in the large-sample regime
might tell us nothing about an algorithm’s practical performance in the small-
data, large-scale regime.

Consequently, this chapter focuses on the small-data, large-scale regime,
with particular emphasis on unique phenomena not typically seen in the
large-sample regime. Our goal is twofold: i) understand how these phenom-
ena impact the performance of certain “traditional” data-driven optimization
algorithms, and, ii) exploit these new phenomena to design better algorithms
tailored to applications in this regime.

Philosophically, the distinction between large-sample and small-data, large-
scale regimes mirrors the distinction between the macroscopic and molecular
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scales in physics. We now know that certain phenomenon, like statistical
and quantum mechanical effects, are essentially negligible when modeling ev-
ery day objects at the macroscopic scale such as cars, people and buildings.
However, at the molecular scale, these forces dominate other forces such as
gravity and friction, and hence objects at this scale behave in “unintuitive”
ways. Indeed, the guiding principle of nanotechnology is that one can en-
gineer systems at the molecular scale to directly exploit these unintuitive
phenomena to achieve performance not possible at the macroscopic sale.

Our goal in studying the small-data, large-scale regime is similar. We seek
to describe and understand the new “unintuitive” phenomena that emerge
in this regime in order to exploit them in the aforementioned applications,
much in the same way nanotechnology does for the molecular scale.

1.1 Structure

The remainder of this chapter is organized as follows: We first introduce a
somewhat stylized data-driven optimization model that allows us to easily
contrast the small-data, large-scale and large-sample regimes. We then high-
light unique phenomenon arising in this regime and show that algorithms de-
signed with large-sample intuition can have very poor behavior in the small-
data, large-scale regime. In the second part of the chapter, we develop an
alternative approach based on debiasing to illustrate that there do exist – at
least in our stylized model – simple algorithms which have excellent behavior
in both regimes.

2 Contrasting the Large-Sample and Small-Data,
Large-Scale Regimes

2.1 Model

We begin with the optimization model

x∗ ∈ arg min
x∈X

µ>x, (1)

where X ⊆ Rn is a known, feasible region, and µ ∈ Rn is an unknown, deter-
ministic vector representing uncertain parameters. Throughout, we assume
that we observe a random variable Z ∈ Rn representing an estimate of µ
such that

E [Z] = µ, and E
[
(Zj − µj)2

]
= 1/νj j = 1, . . . , n. (2)
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In words, Zj is an unbiased estimator of µj with precision νj . (Recall precision
is the reciprocal of variance.) We make no assumptions on the convexity
or shape of X ; it may be a discrete set or involve non-linear, non-convex
constraints. For convenience, we define νmin ≡ minj νj and νmax ≡ maxj νj .

Albeit stylized, Problem (1) subsumes network optimization applications
with uncertain edge costs such as minimum spanning tree, shortest path,
the traveling salesman, and matching on graphs (Bertsimas and Tsitsiklis,
1997). As noted in Elmachtoub and Grigas (2021), with a clever reformu-
lation, Problem (1) also subsumes some inventory optimization applications
with uncertain demands like the economic lot-sizing problem. Finally, through
non-linear transformations (that may introduce non-convexities in X ), Prob-
lem (1) can also model certain multiproduct pricing problems and portfolio
optimization problems (Gupta et al., 2021). In this sense, Problem (1) rep-
resents a general setting under which to study the small-data, large-scale
regime.

Our use of the probabilistic model Eq. (2), however, deviates somewhat
from the traditional operations literature. Equation (2) abstracts away from
the data generation mechanism and instead focuses on the properties of the
estimators Zj built from that data. Importantly, this framework allows us
to describe and analyze both the large-sample and small-data, large-scale
regimes in a variety of data settings with a minimal amount of mathematical
overhead.

Namely, instances of Problem (1) under Eq. (2) fall under the small-data,
large-scale regime when n is very large relative to νmax (a large number of
uncertainties, but all estimates are imprecise). By contrast, such instances
fall under the large-sample regime when n is small relative to νmin (a fixed
number of uncertainties, and all estimates are very precise). One can formal-
ize these definitions by introducing an asymptotic sequence of instances of
Problem (1) (see Gupta and Rusmevichientong (2021) for details), but the
extra formalism offers little insight in what follows, and, hence, we prefer
these loose descriptions.

We next provide some examples illustrating how these definitions of both
regimes in terms of n, νmin and νmax provide a unified framework for analyzing
several different data settings:

Independent, Identically Distributed (I.I.D) Data

Following Gupta and Rusmevichientong (2021), suppose that for each
j = 1, . . . , n, we observe {ξj1, . . . , ξj,Nj} i.i.d. draws of a random vari-
able ξj with mean µj . A natural estimator for µj is the sample average

Zj ≡ N−1j
∑Nj
k=1 ξk,Nj , which is unbiased. Notice the precision of Zj is pro-

portional to Nj . Thus, our intuitive notion of large-sample asymptotics, i.e.,
Nj →∞ for all j, corresponds to νmin →∞. By contrast, our intuitive notion
of small-data, i.e. Nj small and fixed for all j, corresponds to νmax small and
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fixed. Large-scale naturally corresponds to large n. In this way, both large-
sample and small-data, large-scale regimes can be described entirely by the
precisions and dimension n in Eq. (2) without explicitly modeling the i.i.d.
sampling.

Weakly Stationary Time Series

Building on our previous example, suppose now that the sequence (ξj1, . . . , ξj,Nj )
are not i.i.d. for each j, but follow a weakly stationary time series. One can
confirm that sample mean is still an unbiased estimate for µj , but its preci-
sion depends not only on Nj , but also the auto-covariance structure of the
time series. In particular, for a highly-autocorrelated time series, informa-
tion accumulates slowly, and Nj must be fairly large before one can learn µj
precisely.

Fortunately, we can still discuss both regimes without explicitly specifying
this covariance structure by again appealing to the precisions νmin and νmax.
In the large sample setting, νmin will be large relative to n, while in the
small-data, large-scale setting νmax will be small relative to n, and n will be
large.

Regression Settings with Contextual Information

Finally, suppose that we observe independent observations (ξj ,Wj) for
j = 1, . . . , n, where E [ξj ] = µj and Wj ∈ Rp is a fixed covariate that is
informative for the jth uncertain parameter. For example, in logistics and
routing applications, µj might represent the travel time on road j, and Wj

might encode relevant information like the speed limit and length of road j. In
such a setting, it is common to estimate µj by Zj ≡W>

j β
OLS, j = 1, . . . , n,

where

βOLS ∈ arg min
β

n∑
j=1

(ξj −W>
j β)2

is the ordinary least-squares fit, perhaps after transforming the covariates
Wj .

The behavior of these estimates depend subtly on the interplay between
n, p, and the eigenspectrum of the matrix W = (W>

1 , . . . ,W
>
n )> ∈ Rn×p.

However, under the usual homoscedastic assumptions, the precision of Zj is
known to be proportional to

νj ∝
(
W>

j

(
W>W

)−1
Wj

)−1
.
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Hence, we can still describe the large-sample and small-data, large-scale
regimes without explicitly without having to specify details about the struc-
ture of W . Namely, this model is in the large-sample regime if νmin is large
relative to n, and is in the small-data, large-scale regime if n is large relative
to νmax.

Finally, we note that we have not assumed that Z is multivariate Gaussian,
but in many of the estimation settings described above, one would expect
intuitively that Z is approximately distributed as a multivariate Gaussian.
Hence, we will often consider this special case to develop intuition.

We next use our above model to highlight a first important difference in
these regimes.

2.2 Failure of Sample Average Approximation (SAA)

Sample average approximation (SAA), also called empirical risk minimization
(ERM) in the machine learning literature, is arguably the most fundamental
data-driven optimization procedure. Many other popular procedures includ-
ing regularized ERM and distributionally robust optimization are, at least
intuitively, motivated as refinements of SAA.

In our setting, the SAA procedure plugs in the estimator Z for the un-
known µ in Problem (1) and returns the resulting solution:

xSAA(Z) ∈ arg min
x∈X

Z>x. (3)

Under fairly mild assumptions, SAA has excellent performance in the large-
sample regime. In our setting specifically, one can prove

Theorem 0.1 (SAA in Large-Sample Regime)

Consider an instance of Problem (1) under Eq. (2) where X ⊆ [0, 1]n.
The expected sub-optimality of SAA relative to the full-information optimum
satisfies

0 ≤ E
[
µ>xSAA(Z)

]
− µ>x∗ ≤ 2n

√
νmin

.

In particular, in large-sample settings when νmin is large relative to n, SAA
performs comparably to the full-information solution. For clarity, recall in the
i.i.d. setting of our previous example, νmin ∝ minj Nj , and hence Theorem 0.1
shows expected performance of SAA converges to the full-information opti-

mum at a the “usual” rate of O(N
−1/2
min ). The proof of Theorem 0.1 is quite

standard and, hence, omitted.
Since νmax ≥ νmin, the above bound is vacuous in the small-data, large-scale

regime, i.e., when n is large relative to νmax. This is not merely a weakness
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in analysis; SAA can have very poor performance in this regime, as seen in
the following example:

Poor Performance of SAA in Small-Data, Large-Scale Regime

Consider an instance of Problem (1) under Eq. (2) where Zj ∼ N(µj , 1/νj)
is normally distributed,

(µj , νj) =

{
(0, 0.01) if j is odd,

(−1, 1) if j is even,

and

X =

x ∈ [0, 1]n :

n∑
j=1

xj = .01n

 .

For convenience, assume .01n is an integer. In words, the problem seeks to
identify the worst 1% of the µj given the noisy estimates Zj . The full informa-
tion optimal value is −.01n obtained by choosing any .01n even components.

The SAA solution xSAAj = I {Zj ≤ qn} where qn is any solution to the
equation

1

n

n∑
j=1

I {Zj ≤ q} = .01.

Write

1

n

n∑
j=1

I {Zj ≤ q} =
1

2
· 2

n

∑
j:j odd

I {Zj ≤ q}+
1

2
· 2

n

∑
j:j even

I {Zj ≤ q} ,

and note each sum consists of n/2 terms. Since the Zj are i.i.d. for odd j, we
have by the uniform law of large numbers that

2

n

∑
j:j odd

I {Zj ≤ q} →p P (Z1 ≤ q) = Φ (q
√
ν1) = Φ(.1q),

uniformly in q as n→∞, where Φ(·) is the standard normal cumulative dis-
tribution function. Similarly, 2

n

∑
j:j even I {Zj ≤ q} →p P (Z2 ≤ q) = Φ(q+1)

as n→∞. Hence, qn →p q
∗ where

1

2
Φ (.1q∗) +

1

2
Φ (q∗ + 1) = .01.

The value q∗ can be determined numerically as q∗ ≈ −20.54. Then, an entirely
analogous argument shows the scaled performance of SAA satisfies
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1

n
µ>xSAA(Z)→p

1

2
· 0 · P (Z1 ≤ q∗) +

1

2
· 1 · P (Z2 ≤ q∗) .

Hence, the relative performance of SAA to the full-information optimum
satisfies

µ>xSAA(Z)

µ>x∗
→p

P (Z2 < q∗)

−.02
< −10−83,

a negligibly small fraction.
Worse, had we simply chosen a feasible solution at random, our expected

performance would be −.005n, yielding 50% relative performance to the full-
information optimum. Thus, SAA performs substantively worse than random
guessing in this example.

A clever reader might argue that the crux of the issue in the preceding
example is that SAA does not leverage the precision information νj , and
hence is “tricked” into selecting many of the odd components. A more clever
algorithm that leveraged this information could avoid such a mistake.

Although this intuition is partially true, it is not the whole story. Indeed,
Gupta and Rusmevichientong (2021) establishes the following theorem which
shows that no data-driven algorithm exists which can achieve more than a
fraction of the full-information performance in the small-data, large-scale
regime. This behavior sharply contrasts Theorem 0.1.

Theorem 0.2 (Full-Information Optimum is Unattainable) Given
any data-driven algorithm x(·) such that x(Z) ∈ [0, 1]n almost surely, there
exists an instance of Problem (1) with X = [0, 1]n, and νj = 1, µj ∈ {−1,+1}
and Zj ∼ N (µj , 1/νj) for all j, such that

E
[
µ>x(Z)

]
µ>x∗

< .842.

The bound is not tight, but already highlights a distinct phenomena in the
small-data, large-scale regime not present in the large-sample regime. No
algorithm, even one with knowledge of the precisions, can expect to achieve
a large fraction of full-information performance for all instances.

2.3 Best-in-Class Performance

Since full-information performance is not generally achievable, we instead
establish a different benchmark to assess data-driven procedures. To this
end, we next define a notion of “best-in-class” performance for a given policy
class. For simplicity of exposition, we focus our discussion on plug-in policies:
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Definition 0.1 (Plug-in Policy) Given functions fj : R 7→ R, we define
the plug-in policy xf (Z) corresponding to f(·) = (f1(·), . . . , fn(·))> to be

xf (Z) ∈ arg min
x∈X

f(Z)>x, (4)

where f(Z) ∈ Rn is the vector with jth component fj(Zj). Given a set of
functions F , we further define the corresponding class of plug-in polices to
be
{
xf (Z) : f ∈ F

}
.

We stress that the component functions fj(Zj) in the definition may differ
by j or depend on auxiliary information.

Plug-in policies are computationally attractive because computing the pol-
icy for a fixed f(·) requires solving an optimization problem of the same form
as Problem (1). Thus, if there exists a specialized algorithm for solving Prob-
lem (1) – as is the case with many transportation, inventory management
and pricing problems – the same algorithm can be used to evaluate xf (Z).

We next consider some examples:

Sample Average Approximation (SAA) as a Plug-In Policy

SAA is an example of a plug-in policy where fj(Zj) = Zj .

Plug-Ins for Linear Classes

Consider our previous regression set-up whereWj encodes (known) covariate
information for µj . A classical predict-then-optimize approach might first
find the ordinary least-squares estimate βOLS, and then solve Problem (1)
after replacing µj by W>

j β
OLS. We can alternatively view this approach as

a plug-in policy corresponding to the functions (Z1 7→ W>
1 β

OLS, . . . , Zn 7→
W>

n β
OLS).

This policy is in turn a special case of a plug-in policy corresponding to
the linear function class

FLinear = {Z 7→ (W>
1 β, . . . ,W

>
n β)> : β ∈ Rp}.

In Elmachtoub and Grigas (2021), the authors argue that there exist plug-in
policies in this larger class that significantly outperform the plug-in policy
corresponding βOLS.

Observe that members of FLinear are constant valued (they do not depend
on Z), and, hence, the corresponding plug-in policies also do not depend on
Z. We call such classes of plug-in policies non-data-driven. Non-data-driven
policy classes are common in machine learning, but do not cover all examples
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of interest in data-driven optimization. For example, the SAA policy does
depend on Z and hence does not belong to the non-data-driven plug-in policy
class corresponding to FLinear .

We next describe a data-driven plug-in policy class that does contain SAA
as a member:

Plug-Ins Based on Mixed-Effects Regression

Define

FME =

{
Z 7→

( ν1
ν1 + τ

Z1 +
τ

ν1 + τ
W>

1 β, . . . ,
νn

νn + τ
Zn +

τ

νn + τ
W>

n β
)>

: τ ∈ R+,β ∈ Rp
}
.

In words, members of FME proxy each µj as an interpolation between
Zj and a linear fit based on β, where τ controls the degree of interpolation
and the precision νj attenuates the effect. This form of interpolation arises
naturally in a mixed-effects regression model of the unknown µ where we
assume Wj corresponds to some shared (fixed) effects and there is some un-
known, random effect for each j. Moreover, the plug-in policy corresponding
to τ = 0 is xSAA(Z) (c.f. Problem (3)), and the plug-in policies corresponding
to τ =∞ exactly recover the plug-in policies corresponding to FLinear. Thus,
FME strictly generalizes FLinear.

Given any plug-in policy class, we define its “best” member, depending on
the data Z:

Definition 0.2 (Oracle Policy) Given a class F of functions, the oracle
plug-in policy xOR(Z) is defined by

xOR(Z) = xfOR(Z) where fOR ∈ arg min
f∈F

µ>xf (Z). (5)

The oracle policy minimizes the true performance, similar to the full-information
solution x∗ (c.f. Problem (1)). However unlike x∗, the oracle policy is re-
stricted to use a member of the given class. We stress, the oracle policy is
defined with respect to a particular realization of the data Z, and is, thus,
random.

By construction, no plug-in policy from F outperforms its oracle member.
In this sense, the oracle policy is a strong benchmark. On the other hand,
computing xOR(Z) seemingly requires knowledge of µ, so it is not clear that
we can identify a member of the given class with performance comparable
to xOR(Z) using only the data at hand. (We show later that this is indeed
possible in certain cases.)



Optimization in the Small-Data, Large-Scale Regime 11

Importantly, oracle policies for well-chosen policy classes often enjoy favor-
able properties. For example, the element of FME corresponding to parame-
ters (τ,β) can be interpreted as the posterior mean estimate of µ assuming
the data are drawn from the following Bayesian model:

µj ∼ N (W>
j β, 1/τ) independently across j = 1, . . . , n,

Zj | µ ∼ N (µj , 1/νj) independently across j = 1, . . . , n.

Consequently, the corresponding plug-in policy is the Bayes optimal policy
for this model. A standard result in Bayesian statistics is that under very mild
assumptions, Bayes polices are admissible, i.e., no other data-driven policy
pareto-dominates their performance across all values of µ, whether or not
the prior is correctly specified. Hence, since the oracle policy must perform
at least as well as each element of the class, it too inherits this favorable
property and is non-dominated.

In this sense, comparing the performance of a given data-driven algorithm
to performance of an oracle policy from a suitable policy class is arguably a
more natural approach than comparing to the (unachievable) full-information
optimal performance. Indeed, much of the existing literature in small-data,
large-scale optimization focuses on identifying policies with performance com-
parable to an oracle policy, i.e., near best-in-class performance, and we will
do the same throughout the remainder.

2.4 Shortcomings of Cross-Validation

To summarize, we have reduced our study to the problem of identifying a
policy with near best-in-class performance. A standard approach to such
problems is cross-validation. In this section we show that the performance of
cross-validation in the small-data, large-scale regime is complex; in general
it might perform quite poorly, however, in some special cases it has provably
good performance. These two distinct behaviors sharply contrast with the
strong performance of cross-validation in the large-sample regime, highlight-
ing yet another new phenomenon that emerges in the small-data, large-scale
regime.

While there are many variants of cross-validation, we focus below on hold-
out validation for simplicity. At a high-level, hold-out validation uses half the
available data, i.e., training data, to train a policy, and then estimates the
performance of that policy on the remaining half of the data, i.e., hold-out
data. One typically then compares the performance of different policies on
the hold-out data to select a member of a policy class. The hope is that this
procedure identifies a policy with near best-in-class performance.

Since our general model Eq. (2) abstracts away from the data genera-
tion procedure, to model hold-out validation we will need some additional
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assumptions and notation. Our setup will mirror our previous example of
“Independent, Identically Distributed (I.I.D.)” from Section 2.1.

Specifically, we assume that we observe

{ξj,1, . . . , ξj,Nj} drawn i.i.d. such that E [ξj,1] = µj , j = 1, . . . , n. (6)

(For convenience, assume Nj is even for each j.) We then estimate µj by

Zj ≡ 1
Nj

∑Nj
k=1 ξj,k. Our estimate of µj based on the training data is Ztrain

j ≡
2
Nj

∑
k≤Nj/2 ξj,k. Similarly, our estimate of µj based on the hold-out set is

Zhold
j ≡ 2

Nj

∑
k>Nj/2

ξj,k.

With this notation, given a class F , policy selected by hold-out cross val-
idation is

xHO(Z) = xfHO(Z) where fHO ∈ arg min
f∈F

ZHO>xf (Ztrain). (7)

Intuitively, the objective function of Problem (7) is meant to estimate
µ>xf (Z), i.e., the objective defining the oracle policy in Problem (5).

The next example adapted from Gupta et al. (2021) shows that in the
small-data, large-scale regime, this procedure might provide a poor estimate
of oracle performance for a fixed policy and, hence, might fail to identify the
best-in-class policy.

Cross-Validation Can Perform Poorly

Consider an instance of Problem (1) under Eq. (2) in which X = [0, 1]n.
Suppose Nj = 2 for all j and

ξj ∼

{
N (−1, 1) if j ≤ .14n

N (1, 1) otherwise.

Thus, the precision of each Zj is 2, and Ztrain
j = ξj1 while Zhold

j = ξj2. For
convenience, assume 0.14n is an integer.

Finally, take F = {Z 7→ 1,Z 7→ Z} to have only two members. The
corresponding plug-in policies are i) the zero-policy which has all components
equal to zero and ii) the SAA solution xSAA(Z).

By inspection, the oracle performance of the zero-policy is 0. On the other
hand, following an argument entirely analogous to our example in Section 2.2,
one can see that as n → ∞, the scaled, oracle performance of xSAA(Z) con-
verges to

1

n
µ>xSAA(Z)→p −.14Φ(

√
2) + .86Φ(−

√
2) ≈ −.0614.

Hence, an oracle would prefer SAA.
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Next consider hold-out cross-validation. Cross-validation correctly esti-
mates the performance of the zero-policy to be 0. On the other hand, the
scaled cross-validation performance of SAA is

1

n

n∑
j=1

ξj2I {ξj1 ≤ 0} →p −.14Φ(1) + .86φ(−1) ≈ .0186.

This is a very poor estimate of the oracle SAA performance. Moreover, hold-
out cross-validation incorrectly suggests choosing the zero policy as best-in-
class almost surely as n→∞.

In summary, hold-out cross-validation fails in two ways in the previous
example: First, it provides a poor estimate of the SAA policy that remains
poor even as n→∞. This shortcoming alone would not be enough to dismiss
cross-validation as an inviable approach. Indeed, if cross-validation misesti-
mated the performance of all policies by the same constant amount, it could
still be used to identify a best-in-class policy. However, as seen above, cross-
validation also fails in a second way; it misestimates differently for different
policies, and hence picks a poor policy from the policy class.

As discussed in Gupta et al. (2021), the key issue behind the shortcoming of
cross-validation in this setting is that the hold-out objective Problem (7) does
not actually estimate the oracle objective µ>xf (Z), but rather estimates the
objective µ>xf (Ztrain). In the large-sample regime where precisions are high,
xf (Z) and xf (Ztrain) are reasonably close, so cross-validation is an effective
strategy. However, in the small-data, large-scale regime where precisions are
low, sacrificing half that precision when training the policy causes xf (Z) and
xf (Ztrain) to be quite different. Hence, cross-validation does not identify a
near best-in-class policy.

That said, as mentioned, there are special cases where cross-validation does
identify a best-in-class policy in the small-data, large-scale regime. Indeed,
the above intuition suggests that for non-data-driven plug-in policy classes,
e.g., the class induced by FLinear, cross-validation might correctly identify a
best-in-class policy since xf (Z) = xf (Ztrain) for all data realizations. This
intuition is made formal in the following theorem:

Theorem 0.3 (Cross-Validation for Non-Data Driven Plug-in Classes)

Consider a non-data-driven plug-in policy class induced by the set of func-
tions F . Assume

i) 2 ≤ |F| <∞,
ii) The data sets {ξj,k : k = 1, . . . , Nj} are independent across j, and

iii) ξj,k − µj is a subGaussian random variables with variance proxy at most
σ2 for all j and k.

Then, there exists an absolute constant C such that for any 0 < ε < 1
2 , and

any instance of Problem (1) where X ⊆ [0, 1]n, with probability at least 1− ε
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we have that

0 ≤ µ>xHO(Z)− µ>xOR(Z) ≤ Cσ
√
n log |F| log(1/ε).

Proof Since the plug-in policies do not depend on Z, we write xf instead of
xf (Z). Similarly, we write xOR and xHO.

The first inequality is immediate from the definition of xOR. For the second,
observe that

µ>xHO − µ>xOR =
(
µ−ZHO

)>
xHO +ZHO> (xHO − xOR

)
+
(
ZHO − µ

)>
xOR

≤
(
µ−ZHO

)>
xHO +

(
ZHO − µ

)>
xOR

≤ 2 sup
f∈F

∣∣∣(ZHO − µ)> xf ∣∣∣ ,
where the first inequality follows from the definition of xHO. For a fixed f ,

the random variable
(
ZHO − µ

)>
xf is mean zero and subGaussian. From

our independence assumption, its variance proxy is at most

σ2
n∑
j=1

(xfj )2 ≤ σ2n,

since X ⊆ [0, 1]n. Thus, our upper-bound is the supremum of at most
2 |F| mean-zero, subGaussian random variables. By Massart’s Lemma (Wain-
wright, 2019, eq. 2.67), we can bound

E

[
2 sup
f∈F

∣∣∣(ZHO − µ)> xf ∣∣∣] ≤ 4σ
√
n log |F|.

To prove the stronger high-probability result claimed in the theorem, we need
to show that the supremum concentrates at this value. To that end, (Pollard,
1990, Lemma 3.2) shows1 that there exists an absolute constant C1 such that

E

exp

2 supf∈F

∣∣∣(ZHO − µ)> xf ∣∣∣
C1σ

√
n log |F|

2
 ≤ 5.

Applying Markov’s inequality and collecting constants then completes the
proof. �

Theorem 0.3 asserts the sub-optimality of cross-validation scales like
Op(
√
n). In most settings of interest, the oracle performance µ>xOR(Z) scales

1 Pollard (1990) states this result in terms of the Ψ -Orlicz norm. Recall for any
random variable Y , we define ‖Y ‖Ψ = inf{C > 0 : E [exp(Y 2/C2)] ≤ 5}. The Ψ -
Orlicz norm is closely related to the subGaussian parameter of a random variable.
See e.g. (Gupta and Rusmevichientong, 2021, Appendix A) or Rivasplata (2012).
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like Op(n). Thus, Theorem 0.3 proves that in these settings the relative sub-
optimality of the policy chosen by cross-validation relative to the oracle policy
is vanishing at a rate of Op(1/

√
n). In this sense, cross-validation identifies a

near-best-in-class policy asymptotically in the small-data, large-scale regime
for non-data driven plug-in policy classes.

Most of the regularity conditions in Theorem 0.3 can be weakened. For
example, by leveraging classical results for suprema of subGaussian processes,
we can relax the finiteness of F to requiring that F have finite metric entropy.
In this way, one can show that hold-out cross-validation does asymptotically
select a best-in-class policy from F linear in the small-data, large-scale regime,
provided the dimension of Wj is not too large.

Theorem 0.3 contrasts with the behavior in our previous example; cross-
validation does not fail in either of the two aforementioned ways. The above
proof bounds the error over all policies in the policy class simultaneously.
Hence, with high probability, cross-validation asymptotically correctly esti-
mates the performance of every policy in the policy class, and can identify a
best-in-class policy asymptotically. This contrasting behavior when treating
data-driven and non-data driven plug-in policies again highlights a subtlety
of cross-validation in the small-data, large-scale regime not that is not present
in the large-sample regime.

Finally, while somewhat beyond the scope of this chapter, we remark that
Gupta and Kallus (2021) has shown additional new phenomenon for cross-
validation in a slightly different setting. Loosely, they show that if we ran-
domize the amount of data Nj for each component in a particular fashion,
then cross-validation does allow us to identify a best-in-class policy for many
data-driven policy classes in the small-data, large-scale regime with high-
probability. However, even with this randomization, cross validation does not
correctly estimate the oracle performance of any given policy in those classes;
rather it uniformly misestimates by an unknown multiplicative constant. In
this sense, randomizing the amount of data appears to be a “middle-ground”
between our earlier counterexample and Theorem 0.3, addressing one of the
failures of cross-validation but not the other.

Developing a complete theory of cross-validation in the small-data, large-
scale regime remains an open question. In the next section, we pursue an
entirely different avenue for policy selection in the small-data, large-scale
regime.

3 Debiasing In-Sample Performance

Since the shortcomings of cross-validation stem from sacrificing part of the
data when training and part of the data when evaluating the performance of
a policy, one might consider instead selecting a policy by optimizing
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min
f∈F

Z>xf (Z), (8)

so that all the data are used in both steps. Unfortunately, for most interesting
policy classes, this strategy fails, due to the well-known in-sample bias or
“over-fitting” problem. The next theorem illustrates the issue:

Theorem 0.4 (SAA Optimizes a Biased Objective) Suppose there ex-
ists an fSAA ∈ F such that xfSAA(Z) = xSAA(Z). Then,

fSAA ∈ arg min
f∈F

Z>xf (Z).

Proof Write

Z>xSAA(Z) ≥ min
f∈F

Z>xf (Z) ≥ min
x∈X

Z>x = Z>xSAA(Z),

where the first inequality follows because xSAA(Z) = xfSAA(Z), the second
inequality follows because xf (Z) ∈ X for all f ∈ F by construction, and
the last equality follows by definition of xSAA(Z). Thus, we have equality
throughout, proving the theorem. �

Consequently, for any sufficiently rich plug-in policy class, optimizing Prob-
lem (8) returns the SAA solution, which we have already seen can perform
quite poorly in the small-data, large-scale regime.

Some reflection shows that at least part of the issue here is that Z>xf (Z)
is a biased estimate of the oracle objective µ>xf (Z) whenever xf (Z) de-
pends on Z (i.e., for truly data-driven plug-in classes).

Hence, our approach to identifying a best-in-class policy will be to first
debias this estimator.

3.1 Stein Correction

We leverage a classical result for Gaussian distributions attributed to Charles
Stein and frequently called Stein’s Lemma:

Lemma 0.1 (Stein’s Lemma) Suppose Y ∼ N (µ, σ2). Then, for any func-
tion g : R 7→ R that is almost everywhere differentiable and for which both
expectations are defined, we have

E [(Y − µ)g(Y )] = σ2E [g′(Y )] .

Proof We first treat the case where µ = 0 and σ = 1. Then, using integration
by parts,

E [Y g(Y )] =
1√
2π

∫
R
yg(y)e−y

2/2dy =
1√
2π

∫
R
g′(y)e−y

2/2dy = E [f ′(Y )] ,
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proving the special case. For general (µ, σ), define the function g(t) = g(µ+
σt), so that

E [Y g(Y )] = E [(µ+ σξ)g(ξ)] = E [µg(ξ)] + σE [ξg(ξ)] ,

where ξ ∼ N (0, 1). Applying the lemma to the last expectation yields

E [Y g(Y )] = E [µg(ξ)] + σE [g′(ξ)] = E [µg(Y )] + σ2E [g′(Y )] .

Rearranging completes the proof. �

Stein’s Lemma provides a tool to estimate the bias of Z>xf (Z) when Z
is a multivariate Gaussian. Namely,

E
[
(Z − µ)>xf (Z)

]
=

n∑
j=1

E
[
(Zj − µj)E

[
xfj (Z) | Zj

]]
.

Define the function gj(t) ≡ E
[
xfj (Z) | Zj = t

]
. Then, applying Stein’s

Lemma to each element of the sum shows

E
[
(Z − µ)>xf (Z)

]
=

n∑
j=1

1

νj
E
[
g′j(Zj)

]
.

Of course, the challenge is that we do not have a simple expression for
g′(Zj). Instead, we approximate this derivative by a central finite step differ-
ence, i.e., we heuristically argue that for small h,

g′j(Zj) =
gj(Zj + h)− gj(Zj − h)

2h
+O(h2).

Hence, we might expect that

E
[
(Z − µ)>xf (Z)

]
=

n∑
j=1

E [gj(Zj + h)− gj(Zj − h)]

2hνj
+O(nh2)

=

n∑
j=1

E
[
xfj (Z + hej)− xfj (Z − hej)

]
2hνj

+O(nh2),

where ej is the jth coordinate vector.
Gupta and Rusmevichientong (2021) makes the above heuristic argument

rigorous by dealing with potential points of non-differentiability and precisely
quantifying the remainder. Indeed, they prove a slightly stronger theorem
which applies when Z is possibly not multivariate Gaussian, but is well-
approximated by a multivariate Gaussian. For simplicity of exposition, we
summarize their result in the Gaussian case only:
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Theorem 0.5 (Bias of the Stein Correction for Gaussian Estimates)

Suppose that for each j = 1, . . . , n, we have that Zj ∼ N (µj , 1/νj), inde-
pendently across j. Finally, let

Bf (Z, h) ≡
n∑
j=1

xfj (Z + hej)− xfj (Z − hej)
2hνj

. (9)

Then, for any 0 < h < 1
2 , and any plug-in policy xf (Z), we have that∣∣E [µ>xf (Z)
]
− E

[
Z>xf (Z)

]
+Bf (Z, h)

∣∣ ≤ 4h2n.

Theorem 0.5 asserts that by choosing h small enough, we can estimate the
performance µ>xf (Z) of a plug-in policy in an almost unbiased fashion by
the bias-corrected quantity Z>xf (Z)−Bf (Z). At first glance, this analysis
suggests choosing h arbitrarily small. As we will see, h controls a bias-variance
tradeoff for our estimator; small h does induce small bias, but comes at the
cost of large variance.

Given the central role of Stein’s Lemma in its derivation, we term Bf (Z)
the Stein Correction. Evaluating Bf (Z) from the data is straightforward but
computationally cumbersome, since in principle we must compute 2n different
plug-in policies corresponding to the ±h perturbations of the n components.
Gupta and Rusmevichientong (2021) and Gupta et al. (2021) each discuss
possible refinements that exploit either duality or the sensitivity analysis of
the underlying Problem (1) to speed up the computation.

Finally, we remark that in the non-Gaussian case, Gupta and Rus-
mevichientong (2021) generalize the above result so that the error term con-
tains an additional term that does not vanish as h → 0 and depends on the
degree to which Z is non-Gaussian.

3.2 From Unbiasedness to Policy Selection

Theorem 0.5 suggests the following procedure for identifying a near-best-in-
class policy: Choose some small h > 0, then select

xStein(Z) = xfStein(Z) where fStein ∈ arg min
f∈F

Z>xf (Z)−Bf (Z, h). (10)

Unfortunately, Theorem 0.5 alone is not enough to ensure this procedure
identifies a near best-in-class policy, even asymptotically in the small-data,
large-scale regime. Namely, since Theorem 0.5 only treats the bias of our es-
timator, we need also to establish that certain random quantities concentrate
at their expectations.
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More specifically, let fStein,fOR ∈ F be the functions such that xStein(Z) =
xfStein(Z) and xOR(Z) = xfOR(Z). Then, write

µ>
(
xStein(Z)− xOR(Z)

)
= (µ−Z)

>
xStein(Z) +BfStein(Z, h)

+Z>xStein(Z)−BfStein(Z, h)−Z>xOR(Z) +BfOR(Z, h) (11)

+ (Z − µ)
>
xOR(Z)−BfOR(Z, h)

≤ (µ−Z)
>
xStein(Z) +BfStein(Z, h) + (Z − µ)

>
xOR(Z)−BfOR(Z, h),

where the inequality follows from the definition of xStein(Z) (c.f. Prob-
lem (10)). Rearranging and upper bounding by the worst-case in the policy
class shows

µ>
(
xStein(Z)− xOR(Z)

)
≤ 2 sup

f∈F

∣∣∣(Z − µ)
>
xf (Z) +Bf (Z, h)

∣∣∣ .
≤ 2 sup

f∈F

∣∣∣(Z − µ)
>
xf (Z)

∣∣∣+ 2 sup
f∈F

∣∣Bf (Z, h)
∣∣

≤ 2 sup
f∈F

∣∣∣(Z − µ)
>
xf (Z)− E

[
(Z − µ)

>
xf (Z)

]∣∣∣
+ 2 sup

f∈F

∣∣Bf (Z, h)− E
[
Bf (Z, h)

]∣∣
+ 2 sup

f∈F

∣∣∣E [(Z − µ)
>
xf (Z)−Bf (Z, h)

]∣∣∣ .
Theorem 0.5 bounds the last term. Thus,

µ>
(
xStein(Z)− xOR(Z)

)︸ ︷︷ ︸
Sub-Optimality of Our Procedure

≤ 2 sup
f∈F

∣∣∣(Z − µ)
>
xf (Z)− E

[
(Z − µ)

>
xf (Z)

]∣∣∣ (12a)

+ 2 sup
f∈F

∣∣Bf (Z, h)− E
[
Bf (Z, h)

]∣∣ (12b)

+ 4h2n

To prove that xStein(Z) has near best-in-class performance, we must argue
that the above two suprema are vanishingly small in the small-data, large-
scale regime relative to the oracle performance.

When can we expect these suprema to be vanishingly small? To develop
some intuition, we first study a special case in which Problem (1) decouples
into n separate optimization problems.

Theorem 0.6 (Near Best-In-Class Performance for Decoupled Fea-
sible Regions)
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Consider an instance of Problem (1) under Eq. (2) where the feasible region
admits a factorization of the form X = X1 × · · · × Xn for some sets Xj ⊆
[0, 1] for j = 1, . . . n. Suppose further that Z is a multivariate Gaussian with
independent components. Finally, consider a plug-in policy class induced by
the function class F where 2 < |F| <∞. Then, there exists a constant C not
depending on h, n or F such that for any 0 < ε < 1

2

0 ≤ µ>
(
xStein(Z)− xOR(Z)

)︸ ︷︷ ︸
Sub-Optimality of Our Procedure

≤ C log(1/ε)
√

log |F| ·
√
n

h
+ Cnh2.

In particular, if we let h = O(n−1/6), then the sub-optimality of our procedure
is Op(n

2/3).

Recall that in most applications, we expect that µ>xOR(Z) itself will scale
like Op(n). Hence, in these application, the lemma proves that the relative
sub-optimality of our procedure is vanishing in the small-data, large-scale
limit.

Proof Our approach will be to bound the two suprema in Eq. (12). We first
write them explicitly

Eq. (12a) = sup
f∈F

∣∣∣∣∣∣
n∑
j=1

(Zj − µj)xfj (Z)− E
[
(Zj − µj)xfj (Z)

]∣∣∣∣∣∣ ,
Eq. (12b) = sup

f∈F

∣∣∣∣∣∣
n∑
j=1

xj(Z + hej)− xj(Z − hej)− E [xj(Z + hej)− xj(Z − hej)]
2hνj

∣∣∣∣∣∣ .
The argument of each suprema is the sum of mean-zero random variables.
Under our assumption on X , the jth component of the solution xj(Z) only
depends on Zj , but does not depend on Zk for k 6= j. Thus, the terms of
these sums are independent. This observation is crucial. Said differently, both
suprema can be interpreted as suprema of an empirical process and hence
analyzed with standard techniques (see, e.g., Pollard (1990) for a canonical
reference).

To that end, we first bound the supremum in Eq. (12b). For a fixed f ,
each term in the sum has magnitude at most 1

hνmin
. Hence, each term is sub-

Gaussian with variance proxy at most 1
hνmin

. Since the terms are independent,
the entire sum (for a fixed f) is subGaussian with variance proxy at most
n

hνmin
. Finally, since the suprema is over a finite set, we expect the supremum

cannot grow too large. Indeed, by Massart’s Lemma (Wainwright, 2019, Eq.
(2.67)), we know that

E

[
sup
f∈F

∣∣Bf (Z, h)− E
[
Bf (Z, h)

]∣∣] ≤ 2

√
n log |F|
hνmin

.
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To prove a stronger, high-probability bound, we invoke the discussion leading
up to (Pollard, 1990, Eq. (7.4)). This discussion shows that there exists a
constant C1 such that with probability at least 1− ε/2, this supremum is at
most C1 log(1/ε)

√
n
h ·
√

log |F|. (See also Theorem A.1 of Gupta et al. (2021)
for clarification.)

We now treat the supremum in Eq. (12a). Intuitively, the analysis is similar
but it is more tedious to establish that each term of the sum is subGaussian.
Instead we invoke a generic result from empirical process theory that en-

capsulates the relevant argument. Specifically, note that
∣∣∣(Zj − µj)xfj (Z)

∣∣∣ ≤
|Zj − µj |. Hence the vector |Z − µ| with jth component |Zj − µj | is an enve-
lope for the process. Moreover, by Lemma A.1, Part (iv) of Gupta and Rus-

mevichientong (2021), the Orlicz norm2 ‖‖ |Z − µ| ‖2‖Ψ is at most
√

2n
νmin

.

Hence, by Theorem A.1 of Gupta et al. (2021), there exists a constant
C2 such that with probability at least 1 − ε/2, the Eq. (12a) is at most
C2 log(1/ε)

√
n log |F|.

Combining both bounds and collecting constants proves the theorem. �

Theorem 0.6 already highlights the aforementioned tradeoff with h. As we
let h→ 0, the error due to misestimating the bias vanishes, but the stochastic
error stemming from Eq. (12b) blows up.

Using fairly standard machinery from empirical process theory, it is
straightforward to generalize Theorem 0.6 to the setting where |F| is infinite,
but F has finite metric entropy. We refer the interested reader to Pollard
(1990). Similarly, our analysis of the two suprema above only required that
the components Zj were subGaussian and independent. Hence, by leverag-
ing the more general form of Theorem 0.5 in Gupta and Rusmevichientong
(2021), one can also easily generalize Theorem 0.6 to the case where Z is
only approximately Gaussian.

Unfortunately, for more interesting optimization problems where X does
not factorize, the proof of Theorem 0.6 breaks down. The issue is that even for
a fixed f , the terms of the sums composing the suprema are not independent
because xfj (Z) potentially depends on the entire vector Z. The nature of
this dependence hinges on the structure of X in Problem (1) in a potentially
complex way.

Nonetheless, Theorem 0.6 provides a blueprint for how one might analyze
these cases. Namely,

i) Use the structure of X to argue that the terms xfj (Zj) are only “weakly-
dependent” across j. More precisely, we must argue that the sums inside
the suprema of Eq. (12) each concentrate at a rate op(n) for a fixed f ∈ F .

ii) Use empirical process theory to bound each of the suprema with these
weakly dependent sums in terms of the “size” of F , i.e., either its cardi-
nality |F| or its metric entropy.

2 See footnote 1 for details on the Orlicz-norm.
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Although not trivial, this blueprint underlies the more advanced results
in Gupta and Rusmevichientong (2021). Indeed, therein the authors consider
the special case where X is polyhedral of the special form {x ∈ [0, 1]n : Ax ≤
bn}, where A ∈ Rm×n. When m� n, the authors use a duality argument to
show that the relevant terms of the sum are not too dependent, and hence the
above program goes through as described. For a different debiasing procedure,
Gupta et al. (2021) also follows a similar blueprint for problems that suitably
decouple after fixing a small number of decision variables or removing a small
number of constraints. Summarizing these results is beyond the scope of this
chapter.

3.3 Stein Correction in the Large-Sample Regime

Interestingly, although we motivated xStein(Z) by the need for debiasing in
the small-data, large-scale regime, this policy has excellent performance in
the large-sample regime, as well:

Theorem 0.7 (Stein Correction Achieves Full-Information in Large
Sample Regime)

Consider an instance of Problem (1) under Eq. (2) such that X ⊆ [0, 1]n.
Suppose there exists fSAA ∈ F such that xfSAA(Z) = xSAA(Z). Then,

0 ≤ E
[
µ>(xStein(Z)− x∗)

]︸ ︷︷ ︸
Expected Sub-Optimality to Full-Info.

≤ 1

hνmin
+

2n
√
νmin

.

The result should be compared to Theorem 0.1. Indeed, the Stein Correction
adds at most 1

hνmin
to the expected error compared to SAA. Moreover, in

the large-sample limit, νmin → 0, so this term is neglibly small compared
to the SAA error. In other words, the Stein Correction enjoys performance
comparable to the SAA performance in the large-sample regime.

Proof The first inequality follows from the definition of x∗ in Problem (1).
Let fStein ∈ F be the optimizer of Problem (10).

Then write

µ>(xStein(Z)− x∗) = (µ−Z)>xStein(Z) +Z>(xStein(Z)− xSAA(Z))

+Z>(xSAA(Z)− x∗) + (Z − µ)>x∗.

By optimality of xSAA(Z) in Problem (3), the third term above is non-
positive. We can use the Cauchy-Schwarz inequality to upper bound the first
and last term by ‖Z − µ‖1 since x∗,xStein(Z) ∈ X ⊆ [0, 1]n. Thus,
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µ>(xStein(Z)− x∗) ≤ 2‖Z − µ‖1 +Z>(xStein(Z)− xSAA(Z)).

= 2‖Z − µ‖1 +BfStein(Z, h)−BfSAA(Z, h)

+ Z>xStein(Z)−BfStein(Z, h)−Z>xSAA(Z)) +BfSAA(Z, h).

By the optimality of fStein in Problem (10), the last line of the last inequal-
ity is non-positive. Moreover, supf∈F

∣∣Bf (Z, h)
∣∣ ≤ 1

2hνmin
by construction.

Combining shows

µ>(xStein(Z)− x∗) ≤ 2‖Z − µ‖1 +
1

hνmin
.

To complete the proof, take expectations of both sides and observe that
by Jensen’s inequality,

E [‖Z − µ‖1] =

n∑
j=1

E [|Zj − µj |] ≤
n∑
j=1

√
E [(Zj − µj)2] =

n∑
j=1

1√
νj
≤ n
√
νmin

.

Substituting above completes the proof. �

Theorem 0.7 is a heartening result! It shows that it is possible to design
algorithms with provably good performance in both large-sample and small-
data, large-scale regimes.

3.4 Open Questions

The debiasing approach to optimization in the small-data, large-scale regime
still nascent. At time of writing there are a number of exciting open ques-
tions. For what kinds of optimization problems might we expect that the
components of the solution xfj (Z) are only weakly-dependent? Is this weak-
dependence strictly necessary in order to construct provably good procedures,
or is it an artifact of our analysis?

From a computational perspective, how should we efficiently solve Prob-
lem (10)? In general, this problem is discontinuous and non-convex. If the
space of functions F is fairly complex, simple enumeration may not be feasi-
ble. How then should we identify good policies?

More generally, are there better debiasing schemes than the Stein Correc-
tion? Gupta et al. (2021) considers the special case of affine plug-in policies
and provides an alternate debiasing scheme that explicitly leverages optimiza-
tion structure via Danskin’s theorem. What are the benefits and drawbacks
of these various schemes? Might we design even better schemes for particu-
lar, specialized optimization problems in inventory or revenue management?
What other approaches beyond debiasing exist to attack problems in this
new setting?
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4 Conclusion

As the degree of personalization and customization increases in operations
management and operations research applications, the ubiquity of the small-
data, large-scale regime will only increase. Our goal in this chapter was to
highlight some new phenomena that emerge in this regime, and to argue that
these new phenomena can dramatically affect our intuition about and the
performance of data-driven optimization algorithms for these applications.
While developing a comprehensive theory for this regime remains outstand-
ing, we hope that our initial steps will further motivate researchers to develop
customized algorithms for these new, exciting applications that explicitly
leverage these phenomena.
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